127 research outputs found

    An exploratory study to identify rogue seasonality in a steel company's supply network using spectral principal component analysis

    Get PDF
    Variability in the information flows within asupplynetwork requires production companies to either track the variations, hence leading to increased production on-costs, or to buffer themselves via the use of inventory which leads to stock holding costs. Customer demands generate variability, often in the form of seasonal patterns, but must be satisfied. In contrast, “rogueseasonality”, i.e. unintended variability, may be generated by acompany’s own internal processes such as inventory and production control systems. Importantly, rogueseasonality may propagate through asupplynetwork. Thus there is a motivation for automated detection of network-wide rogueseasonality and for the diagnosis of its root cause. In this article, a data-driven technique known as spectral principal component analysis is used to detect and characterise cyclical disturbances in a supply network that indicate seasonality. All the information and material flows participating in each disturbance are detected, and the distribution of each disturbance enables a hypothesis to be reached about its root cause. The technique is applied to a supply network consisting of four autonomous business units in the steel industry. Two main cyclical disturbances were detected and diagnosed. One was found to be rogue seasonality and the other was externally induced by the pattern of customer orders

    Base and surge strategies for controlling environmental and economic costs in logistics triads

    Get PDF
    The aim of this paper is to determine the extent to which it is possible to establish a ‘base’ and ‘surge’ strategy for logistics provision with a particular emphasis on minimising environmental and economic costs. Our method is the combination of empirical research outputs on the impact of uncertainty on economic and environmental costs, and a synthesis of the literature on resilience and the role of flexibility therein. We find that logistics planners either build contingents into their schedules (a priori) or that they respond with contingencies (a posteriori). The former is associated with a ‘base‘ approach; an example of which may be the incorporation of ‘slack time‘ into a schedule to accommodate expected delays due to road congestion. The latter is equivalent to a ‘surge‘ approach where as an example the logistics provider may have capacity flexibility, in the form of spare vehicles, to accommodate post-plan changes in shipper volume requirements. This paper explicitly rationalises the links between uncertainty, ‘base’ and ‘surge’ supply chain strategies, and the strategic use of logistics flexibility, in minimising environmental and economic costs in a logistics triad. The output is in the form of a conceptual managerial feedback control system

    A technique to develop simplified and linearised models of complex dynamic supply chain systems

    Get PDF
    There is a need to identify and categorise different types of nonlinearities that commonly appear in supply chain dynamics models, as well as establishing suitable methods for linearising and analysing each type of nonlinearity. In this paper simplification methods to reduce model complexity and to assist in gaining system dynamics insights are suggested. Hence, an outcome is the development of more accurate simplified linear representations of complex nonlinear supply chain models.  We use the highly cited Forrester production-distribution model as a benchmark supply chain system to study nonlinear control structures and apply appropriate analytical control theory methods. We then compare performances of the linearised model with numerical solutions of the original nonlinear model and with other previous research on the same model.  Findings suggest that more accurate linear approximations can be found. These simplified and linearised models enhance the understanding of the system dynamics and transient responses, especially for inventory and shipment responses.  A systematic method is provided for the rigorous analysis and design of nonlinear supply chain dynamics models, especially when overly simplistic linear relationship assumptions are not possible or appropriate. This is a precursor to robust control system optimisation

    A putative relay circuit providing low-threshold mechanoreceptive input to lamina I projection neurons via vertical cells in lamina II of the rat dorsal horn

    Get PDF
    Background: Lamina I projection neurons respond to painful stimuli, and some are also activated by touch or hair movement. Neuropathic pain resulting from peripheral nerve damage is often associated with tactile allodynia (touch-evoked pain), and this may result from increased responsiveness of lamina I projection neurons to non-noxious mechanical stimuli. It is thought that polysynaptic pathways involving excitatory interneurons can transmit tactile inputs to lamina I projection neurons, but that these are normally suppressed by inhibitory interneurons. Vertical cells in lamina II provide a potential route through which tactile stimuli can activate lamina I projection neurons, since their dendrites extend into the region where tactile afferents terminate, while their axons can innervate the projection cells. The aim of this study was to determine whether vertical cell dendrites were contacted by the central terminals of low-threshold mechanoreceptive primary afferents. Results: We initially demonstrated contacts between dendritic spines of vertical cells that had been recorded in spinal cord slices and axonal boutons containing the vesicular glutamate transporter 1 (VGLUT1), which is expressed by myelinated low-threshold mechanoreceptive afferents. To confirm that the VGLUT1 boutons included primary afferents, we then examined vertical cells recorded in rats that had received injections of cholera toxin B subunit (CTb) into the sciatic nerve. We found that over half of the VGLUT1 boutons contacting the vertical cells were CTb-immunoreactive, indicating that they were of primary afferent origin. Conclusions: These results show that vertical cell dendritic spines are frequently contacted by the central terminals of myelinated low-threshold mechanoreceptive afferents. Since dendritic spines are associated with excitatory synapses, it is likely that most of these contacts were synaptic. Vertical cells in lamina II are therefore a potential route through which tactile afferents can activate lamina I projection neurons, and this pathway could play a role in tactile allodynia

    Neuronal circuitry for pain processing in the dorsal horn

    Get PDF
    Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region

    The Rippling Effect of Non-linearities

    Get PDF
    Non-linearities can lead to unexpected dynamic behaviours in supply chain systems that could then either trigger disruptions or make the response and recovery process more difficult. In this chapter, we take a control-theoretic perspective to discuss the impact of non-linearities on the ripple effect. This chapter is particularly relevant for researchers wanting to learn more about the different types of non-linearities that can be found in supply chain systems, the existing analytical methods to deal with each type of non-linearity and future scope for research based on the current knowledge in this field

    Towards reconciling structure and function in the nuclear pore complex

    Get PDF
    The spatial separation between the cytoplasm and the cell nucleus necessitates the continuous exchange of macromolecular cargo across the double-membraned nuclear envelope. Being the only passageway in and out of the nucleus, the nuclear pore complex (NPC) has the principal function of regulating the high throughput of nucleocytoplasmic transport in a highly selective manner so as to maintain cellular order and function. Here, we present a retrospective review of the evidence that has led to the current understanding of both NPC structure and function. Looking towards the future, we contemplate on how various outstanding effects and nanoscopic characteristics ought to be addressed, with the goal of reconciling structure and function into a single unified picture of the NPC
    corecore